Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 124
1.
J Am Chem Soc ; 146(18): 12511-12518, 2024 May 08.
Article En | MEDLINE | ID: mdl-38669671

Phthalimide-N-oxyl (PINO) and related radicals are promising catalysts for C-H functionalization reactions. To date, only a small number of N-oxyl derivatives have demonstrated improved activities over PINO. We postulate that the lack of success in identifying superior catalysts is associated not only with challenges in the design and synthesis of new structures, but also the way catalysts are evaluated and utilized. Catalyst evaluation typically relies on the use of chemical oxidants to generate N-oxyl radicals from their parent N-hydroxy compounds. Herein we provide an example where a potential-controlled electrochemical analysis reveals that succinimide-N-oxyl (SINO) compares favorably to PINO as a hydrogen atom transfer (HAT) catalyst-in contrast to previous claims based on other approaches. Our efforts to understand the basis for the greater reactivity of SINO relative to PINO have underscored that the HAT kinetics are significantly influenced by factors beyond changes in thermodynamics. This is perhaps best illustrated by the similar reactivity of tetrachloro-PINO and SINO despite the latter engaging in substantially more exergonic reactions. The key role of HAT transition state (TS) polarization prompted the design and initial characterization of a chlorinated SINO derivative, which we found to be the most reactive N-oxyl HAT catalyst reported to date.

2.
J Org Chem ; 89(9): 6126-6137, 2024 May 03.
Article En | MEDLINE | ID: mdl-38619817

Radical-trapping antioxidants (RTAs) are an indispensable class of additive used to preserve hydrocarbon materials from oxidative degradation. Materials that are regularly subjected to elevated temperatures where autoxidation is self-initiated (i.e., >120 °C) require high concentrations of RTA for protection. Not only is this costly, but it can negatively impact material performance. Herein we show that inhibition of the autoxidation of a model hydrocarbon (n-hexadecane) by phenothiazine (PTZ) at ≥160 °C can be greatly enhanced by the incorporation of either 1° or 2° alkyl substituents in the 3- and/or 7-positions of the scaffold. Structure-reactivity studies, product analyses and computations suggest that this results from hydrogen atom transfer (HAT) from the benzylic carbon of these alkyl substituents in the PTZ-derived aminyl radical intermediate. The resultant iminoquinone methide can then undergo further radical-trapping reactions, depending on the nature of the alkyl substituent. Similar structure-reactivity relationships are observed for the phenoxazine (PNX) scaffold. These results not only have significant implications for the design and development of new high-temperature RTA technology, but also for understanding aminic RTA activity at elevated temperatures. Specifically, they suggest that a stoichiometric model better accounts for the RTA activity of aromatic amines in saturated hydrocarbons than the widely accepted catalytic model.

3.
Angew Chem Int Ed Engl ; 63(21): e202315917, 2024 May 21.
Article En | MEDLINE | ID: mdl-38437456

The design of N-oxyl hydrogen atom transfer catalysts has proven challenging to date. Previous efforts have focused on the functionalization of the archetype, phthalimide-N-oxyl. Driven in part by the limited options for modification of this structure, this strategy has provided only modest improvements in reactivity and/or solubility. Our previous mechanistic efforts suggested that while the electron-withdrawing carbonyls of the phthalimide are necessary to maximize the O-H bond dissociation enthalpy of the HAT product hydroxylamine and overall reaction thermodynamics, they undergo nucleophilic substitution leading to catalyst decomposition. In an attempt to minimize this vulnerability, we report the characterization of N-oxyl catalysts wherein the aryl ring in PINO is replaced with the combination of a substituted heteroatom and quaternary carbon. By rendering one carbonyl carbon less electrophilic and the other less sterically accessible, the corresponding N1-aryl-hydantoin-N3-oxyl radical showed significantly higher stability than PINO as well as a modest improvement in reactivity. This proof-of-principle in new scaffold design may accelerate future HAT catalyst discovery and development.

4.
Nature ; 626(7998): 401-410, 2024 Feb.
Article En | MEDLINE | ID: mdl-38297129

Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.


Burkitt Lymphoma , Dehydrocholesterols , Ferroptosis , Neuroblastoma , Animals , Humans , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Cell Survival , Dehydrocholesterols/metabolism , Lipid Peroxidation , Neoplasm Transplantation , Neuroblastoma/metabolism , Neuroblastoma/pathology , Oxidation-Reduction , Phenotype , Reproducibility of Results
5.
J Am Chem Soc ; 146(1): 1153-1166, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38156607

The reactions of organoboranes with peroxyl radicals are key to their use as radical initiators for a vast array of radical chain reactions, particularly at low temperatures where high stereoselectivity or regioselectivity is desired. Whereas these reactions generally proceed via concerted homolytic substitution (SH2) mechanisms, organoboranes that bear groups that can stabilize tetracoordinate boron radical "ate" complexes (e.g., catecholboranes) undergo this reaction via a stepwise addition/fragmentation sequence and serve as useful stoichiometric alkyl radical precursors. Here we show that arylboronic esters and amides derived from catecholborane and diaminonaphthaleneborane, respectively, are potent radical-trapping antioxidants (RTAs). Mechanistic studies reveal that this is because the radical "ate" complexes derived from peroxyl radical addition to boron are sufficiently persistent to trap another radical in an interrupted SH2 reaction. Remarkably, the reactivity of these organoboranes as inhibitors of autoxidation was shown to translate from simple hydrocarbons to the phospholipids of biological membranes such that they can inhibit ferroptosis, the cell death modality driven by lipid autoxidation and relevant in neurodegeneration and other major pathologies. The unique mechanism of these organoboranes is one of only a handful of RTA mechanisms that are not based on H-atom transfer processes and provide a new dimension to boron chemistry and its applications.

6.
J Org Chem ; 88(24): 17420-17429, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38051117

Molybdenum dithiocarbamates (MDTCs) are indispensable lubricant additives. Although their role as antiwear agents is well established, they have also been attributed antioxidant properties that are not understood. MDTCs do not inhibit autoxidation, but they markedly enhance the capacity of diphenylamines (DPAs)─ubiquitous radical-trapping antioxidants (RTAs)─to do so. We find this synergy to be evident not only at elevated temperatures (160 °C in n-hexadecane) but also at moderate temperatures, where autoxidations can be continuously monitored and kinetics more easily interpreted (100 °C in squalane). Interestingly, the synergy disappeared in an unsaturated hydrocarbon (n-hexadec-1-ene), where the RTA activity of the DPA is known to result from the diarylnitroxide derived therefrom. Autoxidations of squalane carried out in the presence of the diarylnitroxide─wherein it is a poor inhibitor─were much better inhibited in the presence of MDTC, suggesting that it converts the nitroxide to (a) more competent RTA(s). Indeed, preparative experiments revealed two species: DPA and a DPA dimer into which a single oxygen atom had been incorporated. This conversion is accelerated by the oxidation of MDTC to a dioxo molybdenum species. A mechanism is proposed to account for these observations, and the implications of our findings and their interpretation are discussed.

7.
ACS Chem Biol ; 18(9): 2073-2081, 2023 09 15.
Article En | MEDLINE | ID: mdl-37639355

The one-electron reduction of lipid hydroperoxides by low-valent iron species is believed to be a driver of cellular lipid peroxidation and associated ferroptotic cell death. We investigated reactions of cholesterol 7α-OOH, the primary cholesterol autoxidation product, with Fe2+ to find that 7-ketocholesterol (7-KC, an oxidation product) is the major product under these (reducing) conditions. Mechanistic studies reveal the intervention of a 1,2-H-atom shift upon formation of the 7-alkoxyl radical to yield a ketyl radical that can be oxidized by either Fe3+ or O2 to give 7-KC, the most abundant oxysterol in vivo. We also investigated the corresponding reduction of the isomeric cholesterol 5α-OOH and again found that an oxidation product (5-hydroxycholesten-3-one) predominates under reducing conditions. An intramolecular H-atom shift (this time 1,4-) in the initially formed 5-alkoxyl radical is suggested to yield a ketyl radical that is oxidized to give the observed product. It would appear that a 1,2-H shift also accounts for the predominance of ketones over alcohols when unsaturated fatty acid hydroperoxides are exposed to iron-based reductants, which had previously been reported with hematin and demonstrated here with Fe2+. The predominance of 7-KC over the corresponding alcohol is maintained when cholesterol 7α-OOH embedded in phospholipid liposomes is treated with Fe2+ or when ferroptosis is induced in mouse embryonic fibroblasts. Our observation that 7-KC accumulates in ferroptotic cells suggests that it may be a good biomarker for ferroptosis.


Fibroblasts , Lipid Peroxides , Animals , Mice , Ethanol , Iron , Ferrous Compounds
9.
Nat Rev Chem ; 7(9): 653-666, 2023 Sep.
Article En | MEDLINE | ID: mdl-37464019

Phthalimide-N-oxyl (PINO) is a valuable hydrogen-atom-transfer (HAT) catalyst for selective C-H functionalization. To advance and optimize PINO-catalysed HAT reactions, researchers have been focused on modifying the phthalimide core structure. Despite much effort and some notable advances, the modifications to date have centred on optimization of a single parameter of the catalyst, such as reactivity, solubility or stability. Unfortunately, the optimization with respect to one parameter is often associated with a worsening of the others. The derivation of a single catalyst structure with optimal performance across multiple parameters has therefore remained elusive. Here we present an analysis of the structure-activity relationships of PINO and its derivatives as HAT catalysts, which we hope will stimulate further development of PINO-catalysed HAT reactions and, ultimately, lead to much improved catalysts for real-world applications.

10.
Angew Chem Int Ed Engl ; 62(34): e202305801, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37390358

A simple method for accessing trans-2,3-diaryl dihydrobenzofurans is reported. This approach leverages the equilibrium between quinone methide dimers and their persistent radicals. This equilibrium is disrupted by phenols that yield comparatively transient phenoxyl radicals, leading to cross-coupling between the persistent and transient radicals. The resultant quinone methides with pendant phenols rapidly cyclize to form dihydrobenzofurans (DHBs). This putative biomimetic access to dihydrobenzofurans provides superb functional group tolerance and a unified approach for the synthesis of resveratrol-based natural products.

11.
Curr Opin Chem Biol ; 76: 102353, 2023 10.
Article En | MEDLINE | ID: mdl-37356334

Recognition of the prevalence of hydropersulfides (RSSH) and characterization of their enhanced two-electron reactivity relative to thiols have led to their implication in maintaining cellular redox homeostasis, in addition to other potential roles. Recent attention on the one-electron reactivity of RSSH has uncovered their potent radical-trapping antioxidant activity, which enables them to inhibit phospholipid peroxidation and associated cell death by ferroptosis. Herein, we briefly review key aspects of the reactivity and underlying physicochemical properties of RSSH. We emphasize their reactivity to radicals-particularly lipid peroxyl radicals that propagate the lipid peroxidation chain reaction-and the recent recognition that this results in ferroptosis suppression. We highlight open questions related to recent developments in this area and, given that all living organisms possess the ability to synthesize persulfides endogenously, suggest they may be primordial radical scavengers that occurred early in evolution and still play a role today.


Antioxidants , Sulfides , Lipid Peroxidation , Sulfides/chemistry , Antioxidants/chemistry , Cell Death
12.
Nat Rev Chem ; 7(8): 573-589, 2023 Aug.
Article En | MEDLINE | ID: mdl-37344618

Organosulfur functionalities are ubiquitous in nature, pharmaceuticals, agrochemicals, materials and flavourants. Historically, these moieties were introduced almost exclusively using ionic chemistry; however, radical-based methods for the installation of sulfur-based functional groups have recently come to the fore. These radical methods have enabled their late-stage introduction into complex molecules, avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. Here, we discuss homolytic C-S bond-forming processes, with a particular emphasis on radical substitution approaches to sulfide, disulfide and sulfinyl products, and the use of sulfur dioxide and its surrogates to build sulfonyl products. We also highlight the mechanistic considerations that we hope will guide further development of radical-based strategies compatible with the various organosulfur moieties that feature in modern chemistry.

13.
Proc Natl Acad Sci U S A ; 120(21): e2300320120, 2023 05 23.
Article En | MEDLINE | ID: mdl-37186845

Iridoviridae, such as the lymphocystis disease virus-1 (LCDV-1) and other viruses, encode viral insulin-like peptides (VILPs) which are capable of triggering insulin receptors (IRs) and insulin-like growth factor receptors. The homology of VILPs includes highly conserved disulfide bridges. However, the binding affinities to IRs were reported to be 200- to 500-fold less effective compared to the endogenous ligands. We therefore speculated that these peptides also have noninsulin functions. Here, we report that the LCDV-1 VILP can function as a potent and highly specific inhibitor of ferroptosis. Induction of cell death by the ferroptosis inducers erastin, RSL3, FIN56, and FINO2 and nonferroptotic necrosis produced by the thioredoxin-reductase inhibitor ferroptocide were potently prevented by LCDV-1, while human insulin had no effect. Fas-induced apoptosis, necroptosis, mitotane-induced cell death and growth hormone-releasing hormone antagonist-induced necrosis were unaffected, suggesting the specificity to ferroptosis inhibition by the LCDV-1 VILP. Mechanistically, we identified the viral C-peptide to be required for inhibition of lipid peroxidation and ferroptosis inhibition, while the human C-peptide exhibited no antiferroptotic properties. In addition, the deletion of the viral C-peptide abolishes radical trapping activity in cell-free systems. We conclude that iridoviridae, through the expression of insulin-like viral peptides, are capable of preventing ferroptosis. In analogy to the viral mitochondrial inhibitor of apoptosis and the viral inhibitor of RIP activation (vIRA) that prevents necroptosis, we rename the LCDV-1 VILP a viral peptide inhibitor of ferroptosis-1. Finally, our findings indicate that ferroptosis may function as a viral defense mechanism in lower organisms.


Apoptosis , Insulin , Humans , C-Peptide , Necrosis , Cell Death
14.
Mol Cell ; 83(7): 1030-1042, 2023 04 06.
Article En | MEDLINE | ID: mdl-36977413

It is common to think about and depict biological processes as being governed by fixed pathways with specific components interconnected by concrete positive and negative interactions. However, these models may fail to effectively capture the regulation of cell biological processes that are driven by chemical mechanisms that do not rely absolutely on specific metabolites or proteins. Here, we discuss how ferroptosis, a non-apoptotic cell death mechanism with emerging links to disease, may be best understood as a highly flexible mechanism that can be executed and regulated by many functionally related metabolites and proteins. The inherent plasticity of ferroptosis has implications for how to define and study this mechanism in healthy and diseased cells and organisms.


Ferroptosis , Ferroptosis/genetics , Cell Death/physiology , Iron/metabolism , Lipid Peroxidation , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
15.
ACS Chem Biol ; 18(3): 561-571, 2023 03 17.
Article En | MEDLINE | ID: mdl-36854078

Lipid peroxidation (LPO) is associated with a variety of pathologies and drives a form of regulated necrosis called ferroptosis. There is much interest in small-molecule inhibitors of LPO as potential leads for therapeutic development for neurodegeneration, stroke, and acute organ failure, but this has been hampered by the lack of a universal high-throughput assay that can identify and assess candidates. Herein, we describe the development and validation of such an approach. Phosphatidylcholine liposomes loaded with ∼10% phospholipid hydroperoxide and STY-BODIPY, a fluorescent signal carrier that co-autoxidizes with polyunsaturated phospholipids, are shown to autoxidize at convenient and constant rates when subjected to an optimized Fe2+-based initiation cocktail. The use of this initiation system enables the identification of each of the various classes of LPO inhibitors which have been shown to rescue from cell death in ferroptosis: radical-trapping antioxidants (RTAs), peroxidase mimics, and iron chelators. Furthermore, a limited dose-response profile of inhibitors enables the resolution of RTA and non-RTA inhibitors─thereby providing not only relative efficacy but mechanistic information in the same microplate-based experiment. Despite this versatility, the approach can still be used to estimate rate constants for the reaction of RTAs with chain-propagating peroxyl radicals, as demonstrated for a representative panel of RTAs. To illustrate the utility of this assay, we carried out a preliminary investigation of the 'off-target' activity of several ferroptosis suppressors that have been proposed to act independently of inhibition of LPO, including lipoxygenase inhibitors, cannabinoids, and necrostatins, the archetype inhibitors of necroptosis.


Antioxidants , Apoptosis , Humans , Lipid Peroxidation , Antioxidants/pharmacology , Cell Death , Necrosis , Phospholipids
16.
ACS Catal ; 12(14): 8511-8526, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-36312445

Alkene aminoarylation with arylsulfonylacetamides via a visible-light mediated radical Smiles-Truce rearrangement represents a convenient approach to the privileged arylethylamine pharmacaphore traditionally generated by circuitous, multi-step sequences. Herein, we report detailed synthetic, spectroscopic, kinetic, and computational studies designed to interrogate the proposed mechanism, including the key aryl transfer event. The data are consistent with a rate-limiting 1,4-aryl migration occurring either via a stepwise process involving a radical Meisenheimer-like intermediate or in a concerted fashion dependent on both arene electronics and alkene sterics. Our efforts to probe the mechanism have significantly expanded the substrate scope of the transformation with respect to the migrating aryl group and provide further credence to the synthetic potential of radical aryl migrations.

17.
J Am Chem Soc ; 144(32): 14706-14721, 2022 08 17.
Article En | MEDLINE | ID: mdl-35921655

The archetype inhibitors of ferroptosis, ferrostatin-1 and liproxstatin-1, were identified via high-throughput screening of compound libraries for cytoprotective activity. These compounds have been shown to inhibit ferroptosis by suppressing propagation of lipid peroxidation, the radical chain reaction that drives cell death. Herein, we present the first rational design and optimization of ferroptosis inhibitors targeting this mechanism of action. Engaging the most potent radical-trapping antioxidant (RTA) scaffold known (phenoxazine, PNX), and its less reactive chalcogen cousin (phenothiazine, PTZ), we explored structure-reactivity-potency relationships to elucidate the intrinsic and extrinsic limitations of this approach. The results delineate the roles of inherent RTA activity, H-bonding interactions with phospholipid headgroups, and lipid solubility in determining activity/potency. We show that modifications which increase inherent RTA activity beyond that of the parent compounds do not substantially improve RTA kinetics in phospholipids or potency in cells, while modifications that decrease intrinsic RTA activity lead to corresponding erosions to both. The apparent "plateau" of RTA activity in phospholipid bilayers (kinh ∼ 2 × 105 M-1 s-1) and cell potency (EC50 ∼ 4 nM) may be the result of diffusion-controlled reactivity between the RTA and lipid-peroxyl radicals and/or the potential limitations on RTA turnover/regeneration by endogenous reductants. The metabolic stability of selected derivatives was assessed to identify a candidate for in vivo experimentation as a proof-of-concept. This PNX-derivative demonstrated stability in mouse liver microsomes comparable to liproxstatin-1 and was successfully used to suppress acute renal failure in mice brought on by tissue-specific inactivation of the ferroptosis regulator GPX4.


Ferroptosis , Animals , Antioxidants/pharmacology , Cell Death , Lipid Peroxidation , Mice , Phospholipids
18.
Nature ; 608(7924): 778-783, 2022 08.
Article En | MEDLINE | ID: mdl-35922516

Ferroptosis, a non-apoptotic form of cell death marked by iron-dependent lipid peroxidation1, has a key role in organ injury, degenerative disease and vulnerability of therapy-resistant cancers2. Although substantial progress has been made in understanding the molecular processes relevant to ferroptosis, additional cell-extrinsic and cell-intrinsic processes that determine cell sensitivity toward ferroptosis remain unknown. Here we show that the fully reduced forms of vitamin K-a group of naphthoquinones that includes menaquinone and phylloquinone3-confer a strong anti-ferroptotic function, in addition to the conventional function linked to blood clotting by acting as a cofactor for γ-glutamyl carboxylase. Ferroptosis suppressor protein 1 (FSP1), a NAD(P)H-ubiquinone reductase and the second mainstay of ferroptosis control after glutathione peroxidase-44,5, was found to efficiently reduce vitamin K to its hydroquinone, a potent radical-trapping antioxidant and inhibitor of (phospho)lipid peroxidation. The FSP1-mediated reduction of vitamin K was also responsible for the antidotal effect of vitamin K against warfarin poisoning. It follows that FSP1 is the enzyme mediating warfarin-resistant vitamin K reduction in the canonical vitamin K cycle6. The FSP1-dependent non-canonical vitamin K cycle can act to protect cells against detrimental lipid peroxidation and ferroptosis.


Ferroptosis , Vitamin K , Antidotes/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Carbon-Carbon Ligases/metabolism , Coenzymes/metabolism , Ferroptosis/drug effects , Hydroquinones/metabolism , Hydroquinones/pharmacology , Lipid Peroxidation/drug effects , Oxidation-Reduction , S100 Calcium-Binding Protein A4/metabolism , Vitamin K/metabolism , Vitamin K/pharmacology , Warfarin/adverse effects
19.
J Am Chem Soc ; 144(34): 15825-15837, 2022 08 31.
Article En | MEDLINE | ID: mdl-35977425

Hydropersulfides (RSSH) are believed to serve important roles in vivo, including as scavengers of damaging oxidants and electrophiles. The α-effect makes RSSH not only much better nucleophiles than thiols (RSH), but also much more potent H-atom transfer agents. Since HAT is the mechanism of action of the most potent small-molecule inhibitors of phospholipid peroxidation and associated ferroptotic cell death, we have investigated their reactivity in this context. Using the fluorescence-enabled inhibited autoxidation (FENIX) approach, we have found RSSH to be highly reactive toward phospholipid-derived peroxyl radicals (kinh = 2 × 105 M-1 s-1), equaling the most potent ferroptosis inhibitors identified to date. Related (poly)sulfide products resulting from the rapid self-reaction of RSSH under physiological conditions (e.g., disulfide, trisulfide, H2S) are essentially unreactive, but combinations from which RSSH can be produced in situ (i.e., polysulfides with H2S or thiols with H2S2) are effective. In situ generation of RSSH from designed precursors which release RSSH via intramolecular substitution or hydrolysis improve the radical-trapping efficiency of RSSH by minimizing deleterious self-reactions. A brief survey of structure-reactivity relationships enabled the design of new precursors that are more efficient. The reactivity of RSSH and their precursors translates from (phospho)lipid bilayers to cell culture (mouse embryonic fibroblasts), where they were found to inhibit ferroptosis induced by inactivation of glutathione peroxidase-4 (GPX4) or deletion of the gene encoding it. These results suggest that RSSH and the pathways responsible for their biosynthesis may act as a ferroptosis suppression system alongside the recently discovered FSP1/ubiquinone and GCH1/BH4/DHFR systems.


Ferroptosis , Animals , Fibroblasts , Lipid Peroxidation , Mice , Phospholipids , Sulfhydryl Compounds
20.
J Am Chem Soc ; 143(45): 19043-19057, 2021 11 17.
Article En | MEDLINE | ID: mdl-34730342

Herein we demonstrate that copper(II)-diacetyl-bis(N4-methylthiosemicarbazone)(CuATSM), clinical candidate for the treatment of ALS and Parkinson's disease, is a highly potent radical-trapping antioxidant (RTA) and inhibitor of (phospho)lipid peroxidation. In THF autoxidations, CuATSM reacts with THF-derived peroxyl radicals with kinh = 2.2 × 106 M-1 s-1─roughly 10-fold greater than α-tocopherol (α-TOH), Nature's best RTA. Mechanistic studies reveal no H/D kinetic isotope effects and a lack of rate-suppressing effects from H-bonding interactions, implying a different mechanism from α-TOH and other canonical RTAs, which react by H-atom transfer (HAT). Similar reactivity was observed for the corresponding Ni2+ complex and complexes of both Cu2+ and Ni2+ with other bis(thiosemicarbazone) ligands. Computations corroborate the experimental finding that rate-limiting HAT cannot account for the observed RTA activity and instead suggest that the reversible addition of a peroxyl radical to the bis(thiosemicarbazone) ligand is responsible. Subsequent HAT or combination with another peroxyl radical drives the reaction forward, such that a maximum of four radicals are trapped per molecule of CuATSM. This sequence is supported by spectroscopic and mass spectrometric experiments on isolated intermediates. Importantly, the RTA activity of CuATSM (and its analogues) translates from organic solution to phospholipid bilayers, thereby accounting for its (their) ability to inhibit ferroptosis. Experiments in mouse embryonic fibroblasts and hippocampal cells reveal that lipophilicity as well as inherent RTA activity contribute to the potency of ferroptosis rescue, and that one compound (CuATSP) is almost 20-fold more potent than CuATSM and among the most potent ferroptosis inhibitors reported to date.


Coordination Complexes/pharmacology , Ferroptosis/drug effects , Free Radical Scavengers/pharmacology , Thiosemicarbazones/pharmacology , Animals , Cell Line , Coordination Complexes/chemistry , Copper/chemistry , Free Radical Scavengers/chemistry , Lipid Peroxidation/drug effects , Mice , Models, Chemical , Nickel/chemistry , Phospholipids/metabolism , Thiosemicarbazones/chemistry
...